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Technical Objectives

1) Establish proof of principle by demonstrating enhanced polymer properties by
the addition of single-walled nanotubes (SWNTSs).

(2) Provide guidelines for materials selection that give improved mechanical,
electrical and/or thermal properties.

(3) Define processing methods most appropriate for the materials
identified. Technical Approach

Our study of SWNT-polymer composites focuses on thermoplastics, because these
materials can be readily drawn into fibers. As we have shown previously, the extensional flow
exerted on the composite during fiber spinning aligns the SWNT to an unprecedented level.
The anisotropic orientation of SWNT in these composite fibers provides an advantage when
looking for changes in macroscopic properties, particularly tensile strength.

Composite processing and composite characterization are now receiving comparable
effort in this project. Processing efforts were expanded this year to include in situ
polymerization of a thermoplastic in the presence of well-dispersed SWNT. In addition to
mechanical testing of the SWNT-thermoplastic fibers, we have established methods for testing
the electrical and thermal conductivity of these highly anisotropic materials. We have also
begun to explore the scattering methods for quantifying the extent of dispersion within the
composites, a widely appreciated and longstanding question in nanocomposites.

Progress

(1) Improved mechanical properties in SWNT-polyethylene (PE) fibers. As an
extension of our work with poly(methyl methacrylate), we established that similar improvements
in the elastic modulus are found is SWNT-polyethylene fibers. This study included developing a
protocol for preparing the composite using a widely-applicable melt mixing method and for melt
spinning the composite into fibers (50 - 200 nm diameter). The extent of SWNT alignment was
tested using Raman spectroscopy and was found to increase as the fiber diameter decreases
due to higher extensional flows. Melt fiber spinning, which we pioneered in SWNT-polymer
composites, remains the best way to align SWNT. We also determined that the improved
mechanical properties were not the result of substantial changes in the crystallinity of the PE
matrix. The improvement in tensile modulus is as high at five times for the case of 100 Om
diameter fibers with 20wt% SWNT in PE relative to a PE fiber. A comparison was made
between the measured elastic moduli and the predicted moduli assuming perfect interfacial
adhesion and complete dispersion. This work was published in the Journal of Nanoscience and




Nanotechnology. A somewhat less extensive study of SWNT-polystyrene composites was also
completed.
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(2) In situ polymerization method for SWNT-nylon. The general melt mixing method
developed for thermoplastics alluded to above involves suspending SWNT in a volatile solvent
and dripping this suspension into a molten polymer while it's under shear. This is applicable to
thermoplastics with glass transitions temperatures below ~150°C. Unfortunately, SWNT-nylon
composites could not be made following this scheme, because is softens at ~300°C.

We have developed an alternative approach for nylon that involves polymerizing nylon in
the presence of suspended SWNT. In particularly we use a two-phase polymerization route in
which the SWNT can be dissolved in the aqueous or the organic phase prior to the reaction.
Using an acid chloride monomer allows this interfacial reaction to occur at room temperature to
high yield when the system is vigorously mixed.

During the previous year our attempts to improve the preparation of SWNT/nylon
composites have met only limited success. We have successfully functionalized the nanotubes,
but the dispersion within the composites is only fair. At present we are attempting to improve
the dispersion using an amine terminated functional group that can participate in the step
growth polymerization of nylon.

3) New method for measuring nanotube dispersion in SWNT composites. As our
ability to disperse nanotubes improves, optical microscopy is no longer sufficient to access the
special distribution of nanotubes in a polymer matrix. Thus, we have recently demonstrated an
imaging method with 1-microon resolution that is based on Raman spectroscopy. Raman
spectroscopy has a specific absorption for SWNTs and that intensity can be mapped across a
40x40 micron area. To quantify this we have normalized the intensities, such that the mean
intensity corresponds to 100 counts. The standard deviation of the mean provides a measure
of the homogeneity of the SWNT distribution over this length scale. Our most recent method
(described below) of preparing SWNT/PMMA composites has proven to be quite homogeneous




in SWNT distribution, unlike our SWNT/nylon composites. The method of Raman imaging
provide a quantitative measure of SWNT dispersion. Currently we are developing SEM
methods to evaluate the SWNT dispersion at an even finer length scale.
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(4) Coagulation Method for Preparing SWNT composites. Coagulation is the
method of recovering a polymer from a solution by pouring a polymer solution into a non-
solvent. We have adapted this method to the preparation of SWNT composites to considerable
success. In a recently accepted paper (Du, et al. Journal of Polymer Science: Polymer Physics
Edition), we have detailed this method and demonstrated the improved SWNT dispersion.
Composites were prepared in three forms: fibers, aligned composites, unaligned composites.

The extent of SWNT alignment in the composites was evaluated by measuring the
azimuthal spread in the form factor x-ray scattering; more SWNT loading in the composites
reduced the extent of alignment (increased the FWHM). The mechanical properties of the
fibers show a modest increase with SWNT loading. The electrical conductivity shows a
percolation threshold as a function of SWNT concentration in the isotropic composite. Note

that the conductivity is much lower (at 2wt% loading) in the aligned composites; this result
highlights the influence of alignment on transport properties. Our paper concludes that the
percolation threshold in nanotube composites will depend on the dispersion (isolated nanotube
or bundles), aspect ratio of nanotubes (or bundles), orientation of nanotubes (or bundies),
nanotube purity, as well as the concentration of nanotubes. We have already demonstrated the

importance of the alignment and are currently pursuing experiments to investigate the nanotube
aspect ratio and the dispersion on electrical and thermal properties.




Finally, we observed improved thermal stability for the pPSWNT/PMMA composites as
illustrated by a reduction in the maximum rate of weight loss and an increase in the temperature
of the maximum rate. We are collaboration with Dr. Takashi Kashiwagi of NIST in pursuing the
fire retardation properties of SWNT in these composites. A joint publication has been
submitted to Macromolecular Rapid Communication.
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